A Heat Stress Detection on Laying Hens Using Deep Neural Network

Byeongjoon Noh*, Jangmin Choi*, Jonguk Lee*, Daihee Park*, Younghwa Chung*, Hong-Hee Chang**

*Department of Computer Science, Korea University,
**Department of Animal Science, Gyeongsang National University

요 약

본 논문에서는 DNN(Deep Neural Network)의 dropout 기법을 이용하여 산란계의 고온 스트레스를 감지하는 방법을 제안한다. 실험에서는 21℃ 상한 온도에서 100개의 소리 데이터를 수집한 후, DNN의 학습을 위해 확대된 음성 데이터를 54개의 소리 특징 정보로 추출한다. 또한, CFS(Correlation Feature Selection)를 이용하여, 추출된 특징 중 음성 구분을 위한 중요한 특징 10개를 선택한다. 뒤에, 선택된 소리특성을 DNN에 적용하여 음성 분류를 구현하는 시스템이다. DNN의 과적합(over-fitting) 현상을 감소시키고, 성능 향상을 위하여 dropout 비율을 조정하여 실험을 진행하였다. 본 연구에서는 실제 계 사에서 수집된 소리 정보를 이용하여 모델설계를 수행한 결과 매우 우수한 성능을 보임을 확인하였다.

1. 서론

최근 농축산업계에서는 IT기술을 접목한 농·축산용
합기술(Computer and Electronics in Agriculture)이라는 새로운 연구 분야가 대두되는데 따라[1], 인력이 아닌 IT기술을 이용하여 축산 동물의 생산성을 높이기 위한 연구가 활발하게 이루어지고 있다[2-4]. 이와 같은 연구 주제 들 중에서, 본 논문에서는 계사에서 산란계의 농지 스트레스를 자동으로 감지하는 시스템을 제안한다.

달과 같은 가금류의 경우 담구즘이 없어 체온 조절에 어려움을 겪는데, 특히 여름철의 인입 최고온도가 30℃가 넘는 고온 다습한 날씨 환경에서 고온에 의한 스트레스

렬플럼한다[5-6]. 이러한 고온 스트레스는 담의 생리
상상에 영향을 미칠 뿐 아니라[7], 계사의 생산량 감소, 계사의 무게 감소 등 계사의 생산성에 영향을 미치게 된다[8]. 따라서 산란계의 고온 스트레스를 효율적으로 조

기에서 탐지하고 관리하는 방법이 요구된다.

본 논문에서는 담의 음성소리를 통해 고온 스트레스

을 탐지하는 시스템을 제안한다. 제안하는 시스템은 담의 음성소리부터 다양한 소리 특징들을 추출한 후 CFS (Correlation Feature Selection)를 이용하여 고온 스트레스에 영향을 주는 중요한 소리 특징 벡터를 선택한다. 선택된 소리 특징벡터를 기반으로 담관리(Deployment) 알고리즘 중 하나인 DNN(Deep Neural Network) 모델을 사용하여 고온 스트레스 여부를 탐지할 수 있도록 설계하였다. 담관리는 최근 음성인식과 영상인식을 비롯한 다

양한 페턴 인식 분야의 성능 향상을 이끄는 중요한 인공

지능 기술이다. 담관리의 정점을 기존 신경망과 담관리

모델의 음성처리 분야에서 매우 좋은 성능을 보이며, DNN-Acoustic 모델을 활용한 연구들이 활발하게 진행되고 있다[10].

DNN의 학습 범위에는 크게 사전학습(pre-training)방

법과 미세조정(fine-tuning)방법이 있다. 사전학습은 신경

망의 초기값을 최적화 근처로 이동하여 신경망의 해가

지역에 수렴하는 것을 방지하는 신경망 모델의 최적화

방법의 방법이다. 미세조정은 과적합을 피하는 방법으로

써, 대표적으로 dropout 기법이 있다. Dropout은 학습 과

정에서 학습의 노드를 배제한 후 학습을 진행하는 방법으로써, 과적합의 영향을 감소시키고, 신경망 모델 노드

들 간의 상호작용(co-adaptation)을 피하여 성능을 항상

시키는 효과가 있다[11]. 본 논문에서는 dropout 비율에

따른 담의 고온 스트레스 탐지 여부의 성능을 확인,
precision, recall을 통하여 평가한다.

본 논문의 구성은 다음과 같다. 2장에는 본 논문에서 제안하는 랜덤 한의 소리 정보 기반의 DNN을 사용한 고온 스트레스 탐지 시스템을 소개하고, 3장에서는 실험결과 및 성능 분석, 마지막으로 4장에서는 결론 및 향후 연구 과제에 대해 논한다.

2. DNN을 이용한 랜덤한 고온 스트레스 탐지 시스템

본 논문에서 제안하는 DNN 기반의 랜덤한 고온 스트레스 탐지 시스템은 크게 2개의 모듈로 구성되며, 시스템 구조는 그림 1과 같다. 1) Preprocessor 모듈에서는 감지된 소리 데이터를 입력하여 합친 높은 소리를 취득 후 취득한 소리 데이터로부터 소리 특성을 추출한 후 CFS를 이용하여 고온 스트레스의 영향을 주는 중요한 소리 특성을 선택하여 특정 범위에 수용한다. 2) Heat Stress Detector 모듈에서는 단단한 알고리즘 중 하나인 DNN 모델을 통하여 성장 상황의 소리와 고온 스트레스 상황의 소리를 구분하고, 그 결과를 관리자에게 즉시 알리고 스트레스에 대한 적절한 대처를 가능하게 한다.

(그림 1) Deep Neural Network을 이용한 랜덤한 고온 스트레스 탐지 시스템

2.1 DNN 모델 기반의 고온 스트레스 탐지

본 논문에서는 담당 악기 중 하나인 DNN 모델에 담은 높은 소리를 특성을 도출하는 입력으로 하여 고온 스트레스를 정량하는 시스템 구조를 접하는 다. DNN 모델은 기존의 인공 신경망의 단순 입력층과 출력층 사이에 하나 이상의 은닉층을 가지는 구조로 구성한 신경망 모델이다. 이렇게 하나 이상의 은닉층을 가지는 것은 신경망의 많은 수의 가중치를 포함하여 학습 속도의 성능(capacity)이 증가하기 때문에 매우 많은 수의 학습 데이터가 사용 가능한 경우는 그로부터 많은 정보를 클러스 할 수 있게 된다[12]. 따라서 본 논문에서는 담은 고온 스트레스 탐지에 학습 능력이 높고 분류 및 예측성능이 뛰어난 DNN 모델을 사용하였다.

3. 실험 및 결과 분석

본 논문에서 제안하는 DNN 기반의 담은 고온 스트레스 탐지 시스템에 대한 성능평가를 위하여 44주변 화이트 브라운 종 랜덤한 135개를 대상으로 하여, 성장 환경(21°C)과 고온 환경(35°C)에 각각 45주차 한 달 동안 배치하여 응용소리를 취득하였다. 취득한 응용소리는 mp3 파일로 변환하여 Cool Edit(Adiobe, San Jose, CA) 프로그램을 사용하여 담의 응용소리가 발생하였을 때 나타 나는 시그널 모양과 응용소리를 직접 듣고 수동으로 응용소리 부분만 취득하였다. 그 결과 성장 환경(21°C)에서의 소리 100개와 고온 스트레스 환경(35°C)에서의 소리 200개를 취득하였다.

3.1 특정 추출 및 특징 선택

취득한 담의 응용소리에서 소리 특성을 추출하였다. 추출을 위한 프로그램은 PRAAT 5.3.32를 사용하였으며 Time Domain 특성 11개와 Frequency Domain 특성 43 개를 추출하였다. 추출한 소리 특성 정보 중에서 고온 스트레스 탐지에 적합한 소리 특성을 CFS를 통하여 선택하였다. 선택된 소리 특성은 10개이며 다음과 같다.

- CFS를 통하여 선택된 소리 특성 10개:
 Formant F1, Formant F2, Formant F4, Mean Pitch, Maximum Pitch, Shimmer, Jitter, PSD1, PSD3, PSD39.

(그림 2) Dropout 기법을 사용한 Deep Neural Network의 예시

3.2 고온 스트레스 탐지 및 탐지 결과

본 실험에서는 CFS를 통하여 선택된 10개의 소리 특성을 추출하여 담당 악기 중 하나인 DNN에 적용하였다. DNN은 R 프로그램 3.1.1 버전에서, H2O 오픈 소스 패키지를 사용하여 실험을 수행하였다. DNN 실험 조건 중 Activation Function은 hyperbolic tangent을 사용하였고, 학습 반복(epoch)는 300회 심사하였다. 은닉 계층의 구조는 그림 2와 같이 5개의 은닉층과, 각 은닉층이 512개의 유닛으로 구성된 신경망을 구성하였다. 위의 경우 신경망을 구성한 후 dropout 비율을 담당하여 성능을 측정하였다. dropout 비율은 not dropout, 10%, 20%, 30%, 40%, 50%로 5가지 경우에 대하여 실험을 진행하였다. 또한, 학습에는 경상 성향 데이터의 50%(50개), 고온 성향 데이터의 50%(100개)를 사용하였고, 테스트에는 경상 상
4. 결론
본 논문에서는 소리 센서를 통하여 실시간으로 유입되는 선태계의 용수소리 정보를 DNN 모델에 적용하여, 선태계의 고온 스테레스 여부를 판단하는 프로토타입 시스템을 제안하였다. 제안된 시스템은 닭의 용수소리 데이터로부터 다양한 특징들을 추출한 후, CFS를 이용하여 고온 스테레스를 탐지하는 적합한 특징들을 선택하였다. 선택된 특징들로 구성된 특징 벡터가 dropout 비율에 따른 DNN 모델에 적용한 실험 결과, dropout 비율이 10%일 때 가장 연결적인 닭의 고온 스테레스 탐지 성능을 확인하였다. 추가적으로 딥러닝의 비교학습(unsupervised learning) 방법 중 하나인 auto-encoder를 통하여, 소리의 특성을 수동으로 추출하는 방식이 아닌, 자동으로 주요 특징들을 추출하여 DNN에 적용하는 실증적인 연구를 진행하고자 한다.

감사의 글
본 연구는 BK21 플러스 사업으로 수행된 연구결과임.

참고문헌